
18 570684 Ch13.qxd  3/31/04  2:51 PM  Page 168

168 Part III: Giving Your Programs the Ability to Run Amok 

Type a character, such as the $ (dollar sign). Press Enter after typing the 
character. 

Uh-oh! What happened? You see something like this: 

Type another character:’$’ is greater than ‘ 
‘$ 

What? What? What? 

You bet! A problem. Right in the middle of the chapter that talks about compar­
ing single-character variables, I have to totally pick up the cat and talk about 
something else vital in C programming: properly reading single characters from 
the keyboard. 

The problem with getchar()

Despite what it says in the brochure, getchar() does not read a single char­
acter from the keyboard. That’s what the getchar() function returns, but it’s 
not what the function does. 

Internally, getchar() reads what’s called standard input. It grabs the first char­
acter you type and stores it, but afterward it sits and waits for you to type 
something that signals “the end.” 

Two characters signal the end of input: The Enter key is one. The second is 
the EOF, or end-of-file, character. In Windows, it’s the Ctrl+Z character. In the 
Unix-like operating systems, it’s Ctrl+D. 

Run the GREATER program, from the preceding section. When it asks for 
input, type 123 and then press the Enter key. Here’s what you see for output: 

Which character is greater? 
Type a single character:123 
Type another character:’2’ is greater than ‘1’ 

When you’re first asked to type a single character, you provide standard 
input for the program: the string 123 plus the press of the Enter key. 

The getchar() function reads standard input. First, it reads the 1 and places 
it in the variable a (Line 9 in GREATER.C). Then, the program uses a second 
getchar() function to read again from standard input — but it has already 
been supplied; 2 is read into the variable b (refer to Line 11). 


