1 68 Part llI: Giving Your Programs the Ability to Run Amok

Type a character, such as the $ (dollar sign). Press Enter after typing the
character.

Uh-oh! What happened? You see something like this:

Type another character:'$' is greater than
'$

What? What? What?

You bet! A problem. Right in the middle of the chapter that talks about compar-
ing single-character variables, I have to totally pick up the cat and talk about
something else vital in C programming: properly reading single characters from
the keyboard.

The problem with getchar()

Despite what it says in the brochure, getchar () does not read a single char-
acter from the keyboard. That’s what the getchar () function returns, but it’s
not what the function does.

Internally, getchar () reads what’s called standard input. It grabs the first char-
acter you type and stores it, but afterward it sits and waits for you to type
something that signals “the end.”

Two characters signal the end of input: The Enter key is one. The second is
the EOF, or end-of-file, character. In Windows, it’s the Ctrl+Z character. In the
Unix-like operating systems, it’s Ctrl+D.

Run the GREATER program, from the preceding section. When it asks for
input, type 123 and then press the Enter key. Here’s what you see for output:

Which character is greater?
Type a single character:123
Type another character:'2' is greater than '1'

When you’re first asked to type a single character, you provide standard
input for the program: the string 123 plus the press of the Enter key.

The getchar () function reads standard input. First, it reads the 1 and places
it in the variable a (Line 9 in GREATER.C). Then, the program uses a second
getchar() function to read again from standard input — but it has already
been supplied; 2 is read into the variable b (refer to Line 11).



